If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x+76=0
a = 1; b = -40; c = +76;
Δ = b2-4ac
Δ = -402-4·1·76
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-36}{2*1}=\frac{4}{2} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+36}{2*1}=\frac{76}{2} =38 $
| x^2-40x-76=0 | | 9/5x+32=86 | | 4(5x-3)=36 | | 1/3x-3/2=2x+1/2 | | h/75=3.2 | | 12r^2+5r-2=0 | | -6=3/x | | -3/2=-2/3y-9/5 | | 2^3x+10=8^2x-5 | | -5×y=2 | | 3−3/4x=1/4x−7 | | 3−34x=14x−7 | | 42−1/6=0.1x | | 3x+7=7x1 | | k+6=21 | | 10n=36−2n | | 90-15x+x²=0 | | -6x+10=x-25 | | -3x=4x+35 | | d=-28=41 | | -5+3x=11-x | | -4x-11=7+2x | | 6x+4x-30=x-8+3x | | 0.2x/5-1.8/5=4.2 | | -32x=2x+23 | | 3(7x+5)=+9x | | -4+r=26 | | 5x-6=-3× | | 0=-16t^2+2304 | | 30+6y=24 | | 3-6y+3y=16-y | | 3x=3.5+x |